MAGNETOHYDRODYNAMIC FLOW PATTERNS
IN A PULSATING MAGNETIC FIELD INVESTIGATED
BY THE METHOD OF CHARACTERISTICS

D. A. But UDC 538.4

In recent years, relatively large magnetohydrodynamic (MHD) facilities with finite magnetic Rey-
nolds numbers {Ry,) and a magnetic field deformed appreciably by conducting flows have been built. The
investigation of MHD devices such that Ry ® 1 encounters difficulties involving the transients in MHD flows
in a pulsating magnetic field, and characterized by substantial MHD interaction. Development of the meth-
od of characteristics is a natural approach to solving those problems.

In the general case, the method of characteristics is inapplicable to analysis of nonstationary MHD
flow patterns with finite Ry, numbers, since the initial system of equations is not a hyperbolic system.
However, if we introduce some restrictions which are allowable in a number of revelant cases, we can
construet models ofquasi-one-dimensional nonstationary MHD flow patterns with hyperbolic quasilinear
initial systems of first-order equations for which the Cauchy data can be successfully formulated on the
boundary curve of spatial or characteristic type [1].

Two types of problems of similar type are solved below for conducting flows in a pulsating trans-
verse magnetic field. The first type encompasses supersonic flow patterns of gas through channels, the
second type refers to the flow of free jets of incompressible fluid. The MHD interaction parameter and
the Ry, number are assumed large. When certain restrictions are imposed on the geometry of the models
and when the electric field in the channels is a potential field, the problems reduce to a Goursat problem,
which can be handled in each case by an electronic digital computer, using the method of finite differences
along the characteristic intervals.

1. Flow of a conducting gas through a narrow rectangular channel. An ideal perfect gas exhibiting a
finite conductivity ¢ flows at a supersonic velocity u (u, 0, 0) through a transverse magnetic field B (0, B, 0)
along a channel with insulating walls y==+y,/2=const and with ideally sectionalized electrode walls z=
+zy/2=const. A unit area of the electrode walls corresponds to a closed external circuit of resistance R
and inductance L situated beyond the exit from the channel. Because of the Faraday effect, an electric
current of density j(0, 0, j) flows through the channel. All of the current taps are oriented in the positive
direction of x, while the magnetic circuit with high magnetic permeability extends to the walls +y,/2 on
the outside, and closes between the entrance plane (x=0) and exit plane (x=1) of the channel. With that ge-
ometry of the current leads and magnetic circuit, each elemental current at point X' induces its own mag-
netic field only in the region x>x' [2], so that perturbations of the magnetic flux density do not propagate
upstream.. Similar conditions are fulfilled, with a certain approximation, in the case of narrow chan-
nels with no steel present, if the current taps are lined up with the flow velocity, and if the current flowing
through the narrow channels makes the major contribution to the induced magnetic field.

The terminal effects are assumed to be suppressed, for instance, on account of the installation of
longitudinal insulating baffles at the channel entrance and channel exit. The variables R, L, ¢ are the ar-
bitrary smooth functions R(x,t), L(x), and o{x, ), respectively. The external magnetic field is independent
of x and varies with time as Be=Bmsin wt. The electrodes at the channel entrance are open, R(0,t)— <,
so that j(0,1) = 0, and the channel entrance parameters remain unperturbed. It is assumed that the basic
contribution to the electric field E (0, 0, —E) is made by the drop in voltage across R and L, while the ro-
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tational (curl) electric field is small on account of 9B/8t. The order of magnitude of the peak amplitude of
the rotational component of E at the channel periphery is wBmz¢/2 (L +2y/1). If we take uBy, as the char-
acteristic amplitude of the potential electric field, then neglect of eddy currents in the channel will be jus-
tified at wzy/2u(1+2y/]) « 1 and at sufficiently large L.

The initial equativons in the problem will be the continuity equations, the equations of motion, the en-
ergy equations, the equations of state, the first Maxwell equation, and the Kirchhoff law for a circuit of
electrodes of unit area:

ap a u du ap .
S =0, o(Gtug)+E=—iB
de de du 3
(G tug) =1
P —const, =i, L-gi+j(R+2)=uB
et S I 7ol s L AR /=

Here e is the internal energy of the gas, and T is the temperature; the remaining notation is that
commonly used.

We now proceed to the dimensionless variables, relating p, p, u, ¢ to their values at the channel en-
trance py, pg, Uy, 0y, the flux density to By, the current density to gguyBy,, L to uozolz, R to zy/oq, x to [,
and t to I/uy.

We also introduce some similitude criteria: the magnetic Reynolds number =lopUgl , the mag~
netohydrodynamic interaction parameter S=croBm2l/ pody, the Mach number M=u/vyp/p, where v is the
adiabatic exponent, and the Euler number E =p0/p0u02. We then obtain a system of five equations in the un-
knowns u, p, p, j, B

at+p -(-u (1.1

p?%+pu ‘;%-{_Ea—al’;:—SiB (1.2)

i 2 (a0 L (1.3)
5;_1% (1.4)

Rl 2 4 (R o")j=uB (1.5)

We supplement this system with the equations for the total differentials of the unknowns,
du= 2004 2ar, ap=P a4+ % s

and so on.
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Following the method presented by Shapiro [3], we now express each derivative du/dt, du/ox, 3p/ot,
9p/9x, ..., and so forth, in terms of the coefficients and free terms of the resulting system of ten equa-
tions according to Cramer!'s rule, and then set the numerator and denominator of each derivative equal to
zero. Then the roots of the denominator will yield the characteristic directions dx/dt, and the roots of
the numerator will yield the conditions for compatibility on the characteristics. In that way we arrive at
the characteristic normal form [1] of the initial system, which is equivalent to the five ordinary differen-
tial equations acting along the characteristics:

EE 4o 2 =5 [(T—i) -f;——AB] aloug (%), =u+4d (1.6)
E%—tp g =Si[tr—1) L+ 48] aong (5) —u—4 (1.7)
EZ 428 _ ()5 atong (%"t_)m —u (1.8)

'Z—BI— = R,,j along (%)IV = 20 (1.9)
RuL%—uB—j(R+5Y aong (5) =0 (4= | (1.10)

All of the characteristic directions dx/dt are real in the problem under discussion, so that the orig-
inal system of equations (1.1)-(1.5) is hyperbolic. This conclusion is a natural one from a physical stand-
point, since all of the perturbations in the model constructed propagate only downstream.

The characteristic system (1.6)-(1.10) can be obtained only with the aid of eigenvalues and the left
eigenvectors of the matrix of the original system (1.1)-(1.5), if preceded by conversion to new variables
n=t+x, T=t—X.

We shall assume that flow is steady-state in the channel when t<0 and that Be =0, and at the instant
1=0, Be begins to vary in proportion to sin wt. We can then formulate the initial conditions of the problem
on the boundary curve in the xt plane, consisting of the positive semiaxes x and t. In effect, when t=0,
there is no magnetohydrodynamic interaction, and all of the parameters along the x axis are known from
the previous steady state. Furthermore, when x=0. we have j= 0, and the channel entrance parameters
remain unaltered, since none of the perturbations propagate upstream, by hypothesis.

Since all of the characteristics have a nonnegative slope dt/dx, the selected boundary curve allows
us to construct a single-valued solution of the problem in the region of influence (the half-strip 0=x=1,
0 =t< ) under the condition that the coefficients of the initial system be smoothly varying coefficients [1].

In view of the fact that the x axis and the t axis are characteristics, we thereby arrive at the Gour-
sat problem. Its peculiar features are that the initial data cannot be specified arbitrarily on the boundary
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Fig. 5 R (0,t)— =, is not a stringent one, since the calculated
origin of the x axis can be shifted somewhat upstream,
when the continuous distribution R (x,1) is arbitrary, to where there are no electrons and no current, and
R (x,t) can be approximated with an essential singularity, within the framework of the one-dimensional ap-
proximation.

The following condiﬁons were assumed in the calculations:

2(0,)=u(z,0=p0,)=p(z,0)=p(0,) =p(2,0) =1
‘ B (0,8 =sin2nt, Bz, 0)=;©08=;(0=0

The system (1.6)-(1.10) was solved on an electronic digital computer by the method of finite differ~-
ences taken along the characteristic intervals [4]. The base grid formed by the characteristics IV and V,
with mesh dimensions Ax=At=10"2 and Ax=At=10"%, was employed. The remaining characteristics were
produced through the point with unknown parameters by linear interpolation of the data on the preceding
computational step. Further fragmentation of the computational grid led only to a negligible further cor-
rection of the results, with the limits of 5%. The final results were verified in spot checks by direct sub-
stitution into the initial system (1.1)-(1.5) recorded in the form of finite differences on the intervals Ax=
At=0.05. The error amounted to =~ 3% of the terms in the equations greatest in absolute value, up to t=3.

Figure 1 shows the distribution of parameters with respect to t for x=0.89 at g=1, L=R=x"1/5,
My=5, E=0.024; Ryy =8=1, and Fig. 2 shows the distribution under the same conditions, except for Ry, =
S=3. In addition to the basic parameters, the curve of the electromagnetic force f =jB is plotted here
{f >0 arbitrarily corresponds to a decelerating force, while f <0 arbitrarily corresponds to an acceler-
ating force).

Clearly, when the external sinusoidally varying field is switched on, there ensues at first an appre-
ciable excursion of j(t) and B(t) into the upper half-plane, followed by a tendency to certain steady-state
values. Typically, j(t) varies qualitatively in the same manner as in a conventional transient when a si-
nusoidal voltage is switched on across an inductive-resistive circuit (e.g., see [5]). When ¢ increases,
and concomitantly Ry, and S increase, the current increases slightly (the base gyuBy, increases), but the
averaged force f in these instances declines because of the negative instantaneous values of f (t), high in
absolute value, and due to the more inductive character of the circuits. This may account for the lower
primary burst of p(t) in response to large Ry, and large 8. Itis clear from Fig. 1 and from Fig. 2 that the
increase in Ry, and in 8 also involves the transient, since the time constant of the circuits increases. The
upward displacement of the B(t) curve with respect to the curve Bg(t) =sin 27t is explained by the effect
exerted by the induced magnetic field.

It is safe to assume that sufficiently short pressure surges in Fig. 1 and Fig. 2, in response to low L
and appreciably large S, lead to discontinuous solutions not covered by the present analysis.

Fluctuations in the temperature of the gas are determined by the ratio p/p.

Curves of the distribution of parameters with respect to x are plotted in Fig. 3 and Fig. 4 for Ry, =
S=3 and for different instants of time (Fig. 3 shows continuous curves plotted for t = 0.5 and dashed curves
plotted for t=0.55; Fig. 4 shows continuous curves plotted for t=0.75 and dashed curves plotted for t=1.5).
The current density and the flux density increase with respect to x, while the p(x) eurve and the p(x) curve,
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together with the p(t) curve and p(t) curve in Fig. 1 and Fig. 2, confirm the inferred formation of compres-
sion waves in the channel.

2. Motion of a free jet of incompressible inviscid conducting fluid. The jet advances with velocity
u(u, 0, 0) and tangentially contacts the sides of the electrodes, sectionalized with respect to x, such that
z=+zy/2=const, each pair of which is connected to an external circuit with ochmic resistance R' and in-
ductance L'. In the region y>y,/2, y<—y,/2, we find a steel magnetic path (u — «) instrumental in estab~
lishing the magnetic field B (0, B, 0). The geometry of the magnetic circuit and of the current taps is the
same as in the preceding problem. The jet moves through the narrow clearance y, beiween the steel walls
without touching them, i.e., 6 <y, where § is the thickness of the jet with respect to y. A current j(0, 0, j)
flows in the jet and establishes a field E (0, 0, ~E) thanks to the voltage drop in the external circuits, a
field which is much larger than the field due to electromagnetic induction in the channel. The end effects
are eliminated by lengthwise baffles or by extending the magnetic field beyond the confines of the channel.
The functions R'{x,t) and L!(x) are specified smooth functions at x=0, t=0; R'(0,t)— . The external
magnetic field Bg varies with time as By sin wt. The gravitational and bulk dynamic forces act along the
x axis, and their acceleration q(t) is specified. The conductivity of the jet o= const.

The dynamics of the transient in the case of electromagnetic parameters is characterized in the one-
dimensional approximation by the Kirchhoff equation for the circuit of one electrode pair

’ , oI
uBzy=1I (:sAzoa:ﬁ +B)+L ot

where Ax is the longitudinal dimension of the electrode and I=j8Ax is the current of the electrode pair.

When the continuity equation ub = const is taken into account, we have

uBzy=j (2 4+ R'Acd) + L'A b (9 — i %) 2.1
The equation of motion of the jet is stated in the form
ou ou iB
B +u il +q

The third initial equation will be the Maxwell equation
OB | 8z = o] (2.2)

The notation for the last equation depends on the way B is averaged over the transverse cross sec-
tion. The form of Eq. (2.2) corresponds to averaging of B over the cross section of the jet proper. But if
B is averaged over the entire clearance y;, then we have fo write instead

B _ b 9.
% L 2.3)

In what follows, the form (2.2) will be used, even though the introduction of Eq. (2.3) instead of Eq.

(2.2) would not complicate the problem in this method.

In what follows, we shall refer x to the channel length [, t to J/uy, B to By, j to ougBm, B! to zy/
oAx6,, Lt to pyzyl*/Ax6y, q to u?/l, and we shall introduce the parameters
oB,21

Puo

Ry = poougl, S =

where p is the density of the fluid and vy and 8 are the velocity and thickness of the jel at the channel eniry.

Then the initial system of equations becomes
ou ou

8 | . @ 1 ; ’ 5B j
aB .
7y :Rm] (2.6)

If we make use of Eq. (2.3) instead of Eq. (2.2}, then the last equation appears in the form

3B__ v i r_ 8o
T = Bn o B’ =Ra o5
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The system (2.4)~(2.6), as in the preceding problem, reduces to the normal characteristic form

(2.7)
'@‘*‘Z‘—S]B along (%) =U
di i d d
A G WB—iE+R) g () =0 (2.8)
dBjdz = R,j along (dx/dt)y;= o 2.9)

When Be=0 att<0, and Bg=sin wt at t=0, then, as earlier, the initial conditions may be specified
on the positive semiaxes x and t, which are characteristics II and III, and the problem reduces to the Gour-
sat problem.

We assume here

@ d=u0 =1, jO ) =j(z0=0 (2.10)
B(2,0)=B,(0) =0, B(0,?=B,=sin2nt

Conditions (2.10) are satisfied by corresponding additional restrictions in the characteristic prob-~
lem, and are in agreement at the point (0,0).

In order to solve the normal form (2.7)~(2.9) with the initial conditions (2.10), we make use of the
same method as in the first problem. The grid in the xt plane with cell dimensions Ax=At=10"?% (inter-
vals along the II and III characteristics) was used. We assigned q=0, Ry, =S=5, R'=L'=x"1/5_ The selec-
tive substitutions of the results for t22 in the initial system (2.4)-(2.6) yielded an error € 3% in the terms
of highest absolute value.

Figure 5 shows how the parameters vary with respect to t when x=0.89 (continuous curves) and when
x=0.29 (dashed curves), for Ry =S5=5. As in the first problem, the velocity lags slightly behind the oscil-
lations of the electromagnetic force f =jB, and a more pronounced acceleration of the fluid by the force f
directed downstream is observed. The oscillations in u bring about an inverse change in 6 and, accord-
ingly, in the internal resistance between each pait of electrodes, and that has a telling effect on the tran-
sient process in the case of the electromagnetic parameters. That could be the explanation, specifically,
for the behavior of the j(t) curve at x=0.89, where the mean value rises initially to t~ 3 and only later
tends toward the t axis. In the injtial portion of the jet (x=0.29), the oscillations in u are much less pro-
nounced, and the behavior of j(t) is the same as in familiar transient processes when variable voltage is
switched on across inductances [5] (see also the dashed curves in Fig. 5).

Note that the method under discussion allows magnetic flux to be switched on in both problems with
an arbitrary initial phase, i.e., Bg=sin (wt+ ¢). Actually, j(x,0) cannot vary stepwise because of the in~
ductances in the circuits, and the initial conditions on the x>0 semiaxis are determined by the preceding
steady state, under the condition that the role played by two-dimensional eddy currents in switching on the
field ¢, = 0 be negligible.

The analysis carried out also encompasses the case, for both flow patterns constantly in a pulsating
magnetic field, when the electrodes were open at t<0 and j{x,t) =0 throughout the channel, but where the
external circuits with arbitrarily varying parameters were closed at t=0.
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